Evidence for the Role of Salicylic Acid in Thermoregulation in Sporophylls of Male Cones of Six Cycad Species
Published: 2022-12-31
Page: 287-294
Issue: 2022 - Volume 5 [Issue 2]
Hanna Skubatz *
NeoPro Labs, 3161 Elliott Ave, Suite 308, Seattle WA 98121, USA.
Michael Calonje
Montgomery Botanical Center, 11901 Old Cutler Road, Coral Gables, FL 33156, USA.
William Tang
Florida State Collection of Arthropods Florida Department of Agriculture – DPI P. O. Box 147100, Gainesville, FL 32614-7100, USA.
*Author to whom correspondence should be addressed.
Abstract
The objective of this research was to provide a framework for the study of induction of thermogenesis by aspirin, salicylic acid, and 2,6-dihydroxybenzoic acid in detached sporophylls from male cones of six cycad species. The thermogenic species were: Zamia elegantissima Schutzman, Vovides & R. S. Adams; Z. furfuracea L.f.; Z. pseudomonticola L.D.Gómez ex D.W.Stev. & Sabato; Z. skinneri Warsz; Encephalartos hildebrandtii A. Braun & C. D. Bouché; and Cycas siamensis Miq. Temperature of single sporophylls was measured for 48 h using thermocouples in the absence and presence of inducers. Sporophylls treated with salicylic acid generated asymmetric temperature waves and square and sinusoidal temperature waves. Also a jump in temperature at a rate of ~ 1 ºC/h was detected in sporophylls treated with salicylic acid. A drop in temperature preceded the temperature jump to a new and higher steady-state level and it stayed unchanged. These unexpected thermal activities suggest cellular controls of mitochondrial thermoregulation.
Keywords: Aspirin, cycads, 2,6-dihydroxybenzoic acid, salicylic acid, sporophyll
How to Cite
References
Meeuse BJD. Thermogenic respiration in aroids. Annu. Rev. Plant Physiol. 1975;26: 117-126.
Tang W. Heat production in cycad cones. Bot. Gaz. 1987;148:165-174.
Ervik, F, Barfod A. 1999. Thermogenesis in palm inflorescences and its ecological significance. Acta Bot. Venez. 1999;22: 195-212.
Seymour R, Silberbauer-Gottsberger I, Gottsberger G. Respiration and temperature patterns in thermogenic flowers of Magnolia ovata under natural conditions in Brazil. Fun. Plant Biol. 2010; 37:870-878.
Skubatz H. Thermoregulation in the appendix of the Sauromatum guttatum (Schott) inflorescence. Bot. Stud. 2014; 4:55-68.
Skubatz H. Contribution of mitochondrial F0F1-ATP synthase and adenine nucleotide translocator to induced thermogenesis in the appendix of Sauromatum venosum inflorescence. J. Bot. Res. 2021;4:123-130
Raskin I, Skubatz H, Tang W, Meeuse BJD. Salicylic acid levels in thermogenic and non-thermogenic plants. Ann. Bot. 1990;66:369-373.
Skubatz H, Tang W, Meeuse BJD. Oscillatory heat-production in the male cones of cycads. J. Exp. Bot. 1993;44:489-492.
Zhu Y, Lu J, Wang J, Chen F, Leng F, Honggyu L. Regulation of thermogenesis in plants: The interaction of alternative oxidase and plant uncoupling mitochondrial protein. J. Integr. Plant Biol. 2011;53:7-13.
Ito-Inaba Y, Sato M, Sato MP, Kurayama Y, Yamamoto H, Ohata M, Ogura Y, Hayashi T, Toyooka K, Inaba T. Alternative oxidase capacity of mitochondria in microsporophylls may function in cycad thermogenesis. Plant Physiol. 2019;180: 743-756.
Johnson KL. Turning up the heat: The alternative oxidase pathway drives thermogenesis in cycad cones. Plant Physiol. 2019;180:689-690.
Roemer RB, Terry LI, Walter GH. Stable, self-limiting thermochemical temperature oscillations in Macrozamia cycads. Plant Cell Environ. 2008;31:769-782.
Suinyu, TN, Donaldson JS, Johnson SD. Patterns of odour emission, thermogenesis and pollinator activity in cones of an African cycad: what mechanisms apply? Ann. Bot. 2013;112:891-902.
Skubatz H, Calonje M, Tang W. Thermogenesis of male cones of four cycad species. Theor. Exp. Plant Physiol. 2019;31:287-293.
Brandman O, Meyer T. Feedback loops shape cellular signals in space and time. Science. 2008;322:390-395.
Ananthasubramaniam B, Herzel H. Positive feedback promotes oscillations in negative feedback loops. PLoS One. 2014;9:e104761.
Umbach AL, Siedow JN. Covalent and noncovalent dimers of the cyanide-resistant alternative oxidase protein in higher plant mitochondria and their relationship to enzyme activity. Plant Physiol. 1993;103:845-854.
Umbach AL, Siedow JN. The reaction of the soybean cotyledon mitochondrial cyanide-resistant oxidase with sulfhydryl reagents suggests that -keto acid activation involves the formation of a thiohemiacetal. J. Biol. Chem. 1996;271: 25019-25026.
Millenaar FF, Lambers H. The alternative oxidase, in vivo regulation and function. Plant Biol. (Stuttg.) 2003;5:2-15.
Dry IB, Moore AL, Day DA, Wiskich JT. Regulation of alternative pathway activity in plant mitochondria: nonlinear relationship between electron flux and the redox poise of the quinone pool. Arch. Biochem. Biophys. 1989;15:148-157.
Gooch VD, Packer L. Oscillatory systems in mitochondria. Biochem. Biophys. Acta 1974;346:245-260.
Feng G, Liu B, Li J, Cheng T, Huang Z, Wang X, Cheng HP. Mitoflash biogenesis and its role in the autoregulation of mitochondrial proton electrochemical potential. J. Gen. Physiol. 2019;151:727-737.
Hattori T, Watanabe K, Uechi Y, Yoshioka H, Ohta Y. 2005. Repetitive transient depolarizations of the inner mitochondrial membrane induced by proton pumping. Biophys. J. 2005;88:2340-2349.
Aon, MA, Cortassa S, Lemar KM, Hayes AJ, Lloyd D. Single and cell population respiratory oscillations in yeast: A 2-photon scanning laser microscopy study. FEBS Lett. 2007;581:8-14.
Skubatz H. Nonsteroidal anti‐inflammatory drugs as antipyretics and modulators of a molecular clock(s) in the appendix of Sauromatum venosum inflorescence. Plant Biol. 2022;25:152-160.
Milton AS. Chapter 8 - Prostaglandins and fever. Prog. Brain Res. 1998;115:129- 139.
Kanamoto H., M. Takemura, and K. Ohyama. 2011 Identification of a cyclooxygenase gene from the red alga Gracilaria vermiculophylla and bioconversion of arachidonic acid to PGF2α in engineered Escherichia coli. Appl. Microbiol. Biotechnol. 2011;91:1121–1129.
Ali M, Afzal M, Hassan RA, Farid A, Burka JF. Comparative study of the in vitro synthesis of prostaglandins and thromboxanes in plants belonging to Liliaceae family. Gen. Pharmacol. 1990;21: 273-276.
Groenewald EG, van der Westhuizen AJ. (1997) Prostaglandins and related substances in plants. Bot. Rev. 1997;63: 199-220.
Rensing L, Ruoff P. Temperature effect on entrainment, phase shifting, and amplitude of circadian clocks and its molecular bases. Chronobiol. Int. 2002;19:807–864.
Thines BC, Youn Y, Duarte MI, Harmon FG. The time of day effects of warm temperature on flowering time involve PIF4 and PIF5. J. Exp. Bot. 2014;65:1141-1151.
Liu Y, Merrow M, Loros JJ, Dunlap JC. 1998. How temperature changes reset a circadian oscillator. Science. 1998;281: 825-829.
Schmitt K, Grimm A, Dallmann R, Oettinghaus B, Restelli LM, Witzig M, Ishihara N, Mihara K, Ripperger JA, Albrecht U, Frank S, Brown SA, Eckert A. Circadian control of DRP1 activity regulates mitochondrial dynamics and bioenergetics. Cell Metab. 2018;27:657-666.
Sokolov K. Tiny thermometers used in living cells. Nature. 2013;500:36-37.